
5675152

B.Tech. DEGREE EXAMINATION JANUARY 2023

Fifth Semester

 Information Technology

OPERATING SYSTEMS

(2013 – 14 Regulations)

Time: Three hours Maximum: 75 marks

PART-A(10*2=20 marks)

Answer all Questions

1. Show the layered structure of the operating system.

The layered structure approach breaks up the operating system into different layers and

retains much more control on the system. The bottom layer (layer 0) is the hardware, and

the topmost layer (layer N) is the user interface. These layers are so designed that each

layer uses the functions of the lower-level layers only. It simplifies the debugging process

as if lower-level layers are debugged, and an error occurs during debugging. The error

must be on that layer only as the lower-level layers have already been debugged.

2. List out the three way implementation of queue in buffering.

Messages are passed via queues, which may have one of three capacity configurations:

Zero capacity - Messages cannot be stored in the queue, so senders must block until

receivers accept the messages.

Bounded capacity- There is a certain pre-determined finite capacity in the queue.

Senders must block if the queue is full, until space becomes available in the queue, but

may be either blocking or non-blocking otherwise.

Unbounded capacity - The queue has a theoretical infinite capacity, so senders are never

forced to block.

3. Compare process and program.

A program is a passive entity that contains the set of codes required to perform a

certain task. A process is an active instance of the program which is started when the

program is executed. Once a program is executed, a process is started by the program.

The process executes the instructions written in the program.

4. Define Race Condition.

A race condition is a situation that may occur inside a critical section. This

happens when the result of multiple thread execution in critical section differs according

to the order in which the threads execute.

Race conditions in critical sections can be avoided if the critical section is treated

as an atomic instruction. Also, proper thread synchronization using locks or atomic

variables can prevent race conditions.

5. Construct the resource allocation graph with cycle but no deadlock.

• The Resource Allocation graph mainly consists of a set of vertices V and a set of

Edges E.

• This graph mainly contains all the information related to the processes that are

holding some resources and also contains the information of the processes that are

waiting for some more resources in the system.

• Also, this graph contains all the information that is related to all the instances of

the resources which means the information about available resources and the

resources which are being used by the process.

• In this graph, the circle is used to represent the process, and the rectangle is used

to represent the resource.

6. Distinguish between logical and physical addresses.

S. No. Logical Address Physical Address

1. This address is generated by the CPU. This address is a location in the memory unit.

2. The address space consists of the set of

all logical addresses.

This address is a set of all physical addresses that are

mapped to the corresponding logical addresses.

3. These addresses are generated by CPU

with reference to a specific program.

It is computed using Memory Management Unit

(MMU).

4. The user has the ability to view the

logical address of a program.

The user can’t view the physical address of program

directly.

5. The user can use the logical address in

order to access the physical address.

The user can indirectly access the physical address.

7. Mention the advantages and Disadvantages of Contiguous allocation of files.

Advantages

1. It is simple to keep track of how many memory blocks are left, which determines how

many more processes can be granted memory space.

2. The read performance of contiguous memory allocation is good because the complete file

may be read from the disk in a single task.

3. The contiguous allocation is simple to set up and performs well.

Disadvantages

1. Fragmentation isn't a problem because every new file may be written to the end of the

disk after the previous one.

2. When generating a new file, it must know its eventual size to select the appropriate hole

size.

3. When the disk is filled up, it would be necessary to compress or reuse the spare space in

the holes.

8. List the types of access in file system interface.

The file contains the information but when it required to used this information can be

access by the access methods and reads into the computer memory. Some system

provides only one access method and some provide more than on access method to access

the file,

1. Sequential Access Method

A sequential access is that in which the records are accessed in some sequence,

i.e., the information in the file is processed in order, one record after the other. This

access method is the most primitive one.

2. Direct or Random Access Methods

The disk is a direct access device which gives us the reliability to random access

of any file block. In the file, there is a collection of physical blocks and the records of that

blocks.

3. Index Access Method

An indexed file is a computer file with an index that allows easy random access to

any record given its file key. The key is an attribute that uniquely identifies a record. We

can say that If more than one index is present the other ones are alternate indexes. The

creation of the indexes is done with the file but maintained by the system.

9. Define seek time and Rotational Latency.

Seek time is the time taken for a hard disk controller to locate a specific piece of

stored data. Seek time can vary upon where the head is present when the read/write

request is sent. The read/write head of the disc takes to move from one disk to another is

called the seek time.

The time taken by the platter to rotate and position the data under the read-write

head is called rotational latency. This latency depends on the rotation speed of the

spindle and is measured in milliseconds.

10. Give short notes on indexed allocation method.

Indexed allocation scheme stores all the disk pointers in one of the blocks called

as indexed block. Indexed block doesn't hold the file data, but it holds the pointers to all

the disk blocks allocated to that particular file. Directory entry will only contain the index

block address.

PART-B (5*11=55 marks)

Answer all Questions

11. List five services provided by an operating system. Explain how each provides

convenience to the users. Also explain in which cases it would be impossible for

user-level programs to provide these services.

An Operating System provides services to both the users and to the programs.

• It provides programs an environment to execute.

• It provides users the services to execute the programs in a convenient manner.

Following are a few common services provided by an operating system −

• Program execution

• I/O operations

• File System manipulation

• Communication

• Error Detection

• Resource Allocation

• Protection

Program execution

Operating systems handle many kinds of activities from user programs to system

programs like printer spooler, name servers, file server, etc. Each of these activities is

encapsulated as a process.

A process includes the complete execution context (code to execute, data to

manipulate, registers, OS resources in use). Following are the major activities of an

operating system with respect to program management −

• Loads a program into memory.

• Executes the program.

• Handles program's execution.

• Provides a mechanism for process synchronization.

• Provides a mechanism for process communication.

• Provides a mechanism for deadlock handling.

I/O Operation

An I/O subsystem comprises of I/O devices and their corresponding driver software.

Drivers hide the peculiarities of specific hardware devices from the users.

An Operating System manages the communication between user and device drivers.

• I/O operation means read or write operation with any file or any specific I/O

device.

• Operating system provides the access to the required I/O device when required.

File system manipulation

A file represents a collection of related information. Computers can store files on

the disk (secondary storage), for long-term storage purpose. Examples of storage media

include magnetic tape, magnetic disk and optical disk drives like CD, DVD. Each of

these media has its own properties like speed, capacity, data transfer rate and data access

methods.

A file system is normally organized into directories for easy navigation and usage.

These directories may contain files and other directions. Following are the major

activities of an operating system with respect to file management −

• Program needs to read a file or write a file.

• The operating system gives the permission to the program for operation on file.

• Permission varies from read-only, read-write, denied and so on.

• Operating System provides an interface to the user to create/delete files.

• Operating System provides an interface to the user to create/delete directories.

• Operating System provides an interface to create the backup of file system.

Communication

In case of distributed systems which are a collection of processors that do not

share memory, peripheral devices, or a clock, the operating system manages

communications between all the processes. Multiple processes communicate with one

another through communication lines in the network.

The OS handles routing and connection strategies, and the problems of contention

and security. Following are the major activities of an operating system with respect to

communication −

• Two processes often require data to be transferred between them

• Both the processes can be on one computer or on different computers, but are

connected through a computer network.

• Communication may be implemented by two methods, either by Shared Memory

or by Message Passing.

Error handling

Errors can occur anytime and anywhere. An error may occur in CPU, in I/O devices

or in the memory hardware. Following are the major activities of an operating system

with respect to error handling −

• The OS constantly checks for possible errors.

• The OS takes an appropriate action to ensure correct and consistent computing.

Resource Management

In case of multi-user or multi-tasking environment, resources such as main memory,

CPU cycles and files storage are to be allocated to each user or job. Following are the

major activities of an operating system with respect to resource management −

• The OS manages all kinds of resources using schedulers.

• CPU scheduling algorithms are used for better utilization of CPU.

Protection

Protection refers to a mechanism or a way to control the access of programs,

processes, or users to the resources defined by a computer system. Following are the

major activities of an operating system with respect to protection −

• The OS ensures that all access to system resources is controlled.

• The OS ensures that external I/O devices are protected from invalid access

attempts.

• The OS provides authentication features for each user by means of passwords.

12. a) Distinguish between tightly coupled system and loosely coupled system.

S.NO Loosely Coupled Tightly Coupled

1.

There is distributed memory in loosely

coupled multiprocessor system.

There is shared memory, in tightly

coupled multiprocessor system.

2.

Loosely Coupled Multiprocessor System

has low data rate.

Tightly coupled multiprocessor system

has high data rate.

3.

The cost of loosely coupled multiprocessor

system is less.

Tightly coupled multiprocessor system

is more costly.

4.

In loosely coupled multiprocessor system,

modules are connected through Message

transfer system network.

While there is PMIN, IOPIN and ISIN

networks.

5.

In loosely coupled multiprocessor, Memory

conflicts don’t take place.

While tightly coupled multiprocessor

system have memory conflicts.

6.

Loosely Coupled Multiprocessor system

has low degree of interaction between tasks.

Tightly Coupled multiprocessor system

has high degree of interaction between

tasks.

7.

In loosely coupled multiprocessor, there is

direct connection between processor and

I/O devices.

While in tightly coupled

multiprocessor, IOPIN helps connection

between processor and I/O devices.

8.

Applications of loosely coupled

multiprocessor are in distributed computing

systems.

Applications of tightly coupled

multiprocessor are in parallel

processing systems.

 b) Specify the five major activities of an operating system in regard to process

management.

Five major process management activities of an operating system are

a. creation and deletion of user and system processes.

b. suspension and resumption of processes.

c. provision of mechanisms for process synchronization.

d. provision of mechanisms for process communication.

e. provision of mechanisms for deadlock handling.

 13. Describe an algorithm which satisfies all the conditions of critical section problem

 and also solve the readers writers problems using semaphore.

The critical section is a code segment where the shared variables can be accessed. An

atomic action is required in a critical section i.e. only one process can execute in its

critical section at a time. All the other processes have to wait to execute in their critical

sections.

A diagram that demonstrates the critical section is as follows −

In the above diagram, the entry section handles the entry into the critical section. It

acquires the resources needed for execution by the process. The exit section handles the

exit from the critical section. It releases the resources and also informs the other

processes that the critical section is free.

Solution to the Critical Section Problem

The critical section problem needs a solution to synchronize the different processes.

The solution to the critical section problem must satisfy the following conditions −

• Mutual Exclusion Mutual exclusion implies that only one process can be inside

the critical section at any time. If any other processes require the critical section,

they must wait until it is free.

• Progress Progress means that if a process is not using the critical section, then it

should not stop any other process from accessing it. In other words, any process

can enter a critical section if it is free.

• Bounded Waiting Bounded waiting means that each process must have a limited

waiting time. Itt should not wait endlessly to access the critical section.

Peterson's Solution

• Peterson's Solution is a classic software-based solution to the critical section

problem. It is unfortunately not guaranteed to work on modern hardware, due to

vagaries of load and store operations, but it illustrates a number of important

concepts.

• Peterson's solution is based on two processes, P0 and P1, which alternate between

their critical sections and remainder sections. For convenience of discussion,

"this" process is Pi, and the "other" process is Pj. (I.e. j = 1 - i)

• Peterson's solution requires two shared data items:

o int turn - Indicates whose turn it is to enter into the critical section. If turn = = i,

then process i is allowed into their critical section.

o boolean flag[2] - Indicates when a process wants to enter into their critical

section. When process i wants to enter their critical section, it sets flag[i] to true.

• In the following diagram, the entry and exit sections are enclosed in boxes.

o In the entry section, process i first raises a flag indicating a desire to enter the

critical section.

o Then turn is set to j to allow the other process to enter their critical section if

process j so desires.

o The while loop is a busy loop (notice the semicolon at the end), which makes

process i wait as long as process j has the turn and wants to enter the critical

section.

o Process i lowers the flag[i] in the exit section, allowing process j to continue if it

has been waiting.

Figure - The structure of process Pi in Peterson's solution.

READERS-WRITERS PROBLEM

In the readers-writers problem there are some processes (termed readers) who

only read the shared data, and never change it, and there are other processes (termed

writers) who may change the data in addition to or instead of reading it. There is no limit

to how many readers can access the data simultaneously, but when a writer accesses the

data, it needs exclusive access.

• There are several variations to the readers-writers problem, most centered around

relative priorities of readers versus writers.

• The first readers-writers problem gives priority to readers. In this problem, if a

reader wants access to the data, and there is not already a writer accessing it, then

access is granted to the reader. A solution to this problem can lead to starvation

of the writers, as there could always be more readers coming along to access the

data. (A steady stream of readers will jump ahead of waiting writers as long as

there is currently already another reader accessing the data, because the writer is

forced to wait until the data is idle, which may never happen if there are enough

readers.

• The second readers-writers problem gives priority to the writers. In this problem,

when a writer wants access to the data it jumps to the head of the queue - All

waiting readers are blocked, and the writer gets access to the data as soon as it

becomes available. In this solution the readers may be starved by a steady stream

of writers.

The following code is an example of the first readers-writers problem, and involves an

important counter and two binary semaphores:

• readcount is used by the reader processes, to count the number of readers

currently accessing the data.

• mutex is a semaphore used only by the readers for controlled access to readcount.

• rw_mutex is a semaphore used to block and release the writers. The first reader to

access the data will set this lock and the last reader to exit will release it; The

remaining readers do not touch rw_mutex. (Eighth edition called this variable

wrt.)

14. Draw the gantt charts of the processes using RR, non preemptive SJF scheduling

with suitable examples.

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id Arrival time Burst time

P1 0 5

P2 1 3

P3 2 1

P4 3 2

P5 4 3

If the CPU scheduling policy is Round Robin with time quantum = 2 unit, calculate the average

waiting time and average turn around time.

Gantt Chart-

Ready Queue-

P5, P1, P2, P5, P4, P1, P3, P2, P1

Process Id Exit time Turn Around time Waiting time

P1 13 13 – 0 = 13 13 – 5 = 8

P2 12 12 – 1 = 11 11 – 3 = 8

P3 5 5 – 2 = 3 3 – 1 = 2

P4 9 9 – 3 = 6 6 – 2 = 4

P5 14 14 – 4 = 10 10 – 3 = 7

Now,

Average Turn Around time = (13 + 11 + 3 + 6 + 10) / 5 = 43 / 5 = 8.6 unit

Average waiting time = (8 + 8 + 2 + 4 + 7) / 5 = 29 / 5 = 5.8 unit

Non Preemptive SJF Scheduling

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id Arrival time Burst time

P1 3 1

P2 1 4

P3 4 2

P4 0 6

P5 2 3

If the CPU scheduling policy is SJF non-preemptive, calculate the average waiting time and

average turn around time.

Gantt Chart-

Process Id Exit time Turn Around time Waiting time

P1 7 7 – 3 = 4 4 – 1 = 3

Now,

• Average Turn Around time = (4 + 15 + 5 + 6 + 10) / 5 = 40 / 5 = 8 unit

• Average waiting time = (3 + 11 + 3 + 0 + 7) / 5 = 24 / 5 = 4.8 unit

15. Consider the following snapshot of a system:

Process Allocation Max Available

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 0 1 0 7 5 3 3 3 2

P2 2 0 0 3 2 2

P3 3 0 2 9 0 2

P4 2 1 1 2 2 2

P5 0 0 2 4 3 3

 Answer the following questions based on the banker's algorithm:

a) Find out the content of matrix need.

b) Is the system in a safe state.

P2 16 16 – 1 = 15 15 – 4 = 11

P3 9 9 – 4 = 5 5 – 2 = 3

P4 6 6 – 0 = 6 6 – 6 = 0

P5 12 12 – 2 = 10 10 – 3 = 7

16. Given memory Partitions of 200 kb, 600 kb, 300 kb, 400 kb, and 700 kb(in order),

how would each of the first fit, best fit and worst fit algorithms place processes of

312kb, 517kb, 212kb and 526kb (in order)?

Which algorithm makes the most efficient use of memory?

First-fit

The first-fit algorithm selects the first free partition that is large enough to accommodate

the request.

First-fit would allocate in the following manner:

312 KB => 600 KB partition, leaves a 288 KB partition

517 KB =>700 KB partition, leaves a 183 KB partition

212 KB => 288 KB partition, leaves a 76 KB partition

526 KB would not be able to allocate, no partition large enough!

 Best-fit

The best-fit algorithm selects the partition whose size is closest in size (and large enough)

to the requested size.

Best-fit would allocate in the following manner:

312 KB => 400 KB, leaving a 88 KB partition

517 KB => 600 KB, leaving a 83 KB partition

212 KB => 300 KB, leaving a 88 KB partition

526 KB => 700 KB, leaving a 174 KB partition

Worst-fit

The worst-fit algorithm effectively selects the largest partition for each request.

Worst-fit would allocate in the following manner:

312 KB => 700 KB, leaving a 388 KB partition

517 KB => 600 KB, leaving a 83 KB partition

212 KB => 388 KB, leaving a 176 KB partition

526 KB would not be allowed to allocate as no partition is large enough!

 Which algorithm makes the most efficient use of memory?

The best-fit algorithm performed the best of the three algorithms, as it was the only

algorithm to meet all the memory requests.

17. Suppose that a disk drive has 3000 cylinders. Numbered 0 to 2999 the drive is

currently serving a request at cylinder 143. And the previous request was at 125.

The queue of pending requests in FIFO order is 86,1470,

913,1774,948,1509,1022,1750,130. Starting from the current head position, what is

the total distance (in cylinders) that the disk arm moves to satisfy all the pending

requests for each of the following disk scheduling algorithms?

a) FCFS

b) C-SCAN

c) C-LOOK

18. a) list out the file types in file system interface

The following is the types of the files. A common technique for implementing file types is to

include the type as part of the file name. The name is split into two parts-a name and an

extension, usually separated by a period character (Figure (a))

b)Enumerate the directory implementation in file system

The selection of directory-allocation and directory-management algorithms has a large

effect on the efficiency, performance, and reliability of the file system. Two algorithms

are linear and hash table algorithm.

Linear List

 The simplest method of implementing a directory is to use a linear list of file

names with pointers to the data blocks. A linear list of directory entries requires a linear

search to find a particular entry. This method is simple to program but time-consuming to

execute. To create a new file, we must first search the directory to be sure that no existing

file has the same name. Then, we add a new entry at the end of the directory. To delete a

file, we search the directory for the named file, then release the space allocated to it.

• To reuse the directory Entry: mark the entry as unused (by assigning it a special

name, such as an all-blank name, or with a used-unused bit in each entry)

• Attach it to a list of free directory entries.

• Copy the last entry in the directory into the freed location, and to decrease the

length of the directory. A linked list can also be used to decrease the time to

delete a file.

 Disadvantage:

 Through linear search it takes time to search a file.

 Directory information is used frequently, and users would notice a slow

implementation of access to it.Many operating systems implement a software cache to

store the most recently used directory information. A cache hit avoids constantly

rereading the information from disk. A sorted list allows a binary search and decreases

the average search time.

Hash Table

 Another data structure that has been used for a file directory is a hash table. In this

method, a linear list stores the directory entries, but a hash data structure is also used. The

hash table takes a value computed from the file name and returns a pointer to the file

name in the linear list. Therefore, it can greatly decrease the directory search time.

Insertion and deletion are also fairly straightforward, although some provision must be

made for collisions-situations where two file names hash to the same location. The major

difficulties with a hash table are its generally fixed size and the dependence of the hash

function on that size.

 For example, assume that we make a linear-probing hash table that holds 64 entries. The

hash function converts file names into integers from 0 to 63, for instance, by using the

remainder of a division by 64. If we later try to create a 65th file, we must enlarge the

directory hash table-say, to 128 entries. As a result, we need a new hash function that

must map file names to the range 0 to 127, and we must reorganize the existing directory

entries to reflect their new hash-function values. Alternately, a chained overflow hash

table can be used.

19. Illustrate I/O schedule and buffering in kernel I/O schedule.

Kernels provide many services related to I/O. Several services-scheduling, buffering,

caching, spooling, device reservation, and error handling-are provided by the kernel's I/O

subsystem and build on the hardware and device driver infrastructure.

I/0 Scheduling

To schedule a set of I/O requests means to determine a good order in which to execute

them. The order in which applications issue system calls rarely is the best choice.

Scheduling can improve overall system performance, can share device access fairly

among processes, and can reduce the average waiting time for 1/0 to complete. Here is a

simple example to illustrate Application 1 requests a block near the end of the disk,

application 2 requests one near the beginning, and application 3 requests one in the

middle of the disk. The operating system can reduce the distance that the disk arm travels

by serving the applications in order 2, 3, 1. Rearranging the order of service in this way is

the essence of I/O scheduling. When an application issues a blocking I/O system call, the

request is placed on the queue for that device. The I/O scheduler rearranges the order of

the queue to improve the overall system efficiency and the average response time

experienced by applications.

Buffering

A buffer is a memory area that stores data while they are transferred between two devices

or between a device and an application. Buffering is done for three reasons. One reason is

to cope with a speed mismatch between the producer and consumer of a data stream.

Suppose, for example, that a file is being received via modem for storage on the hard

disk. The modem is about a thousand times slower than the hard disk. So a buffer is

created in main memory to accumulate the bytes received from the modem. When an

entire buffer of data has arrived, the buffer can be written to disk in a single operation.

Since the disk write is not instantaneous and the modem still needs a place to store

additional incoming data, two buffers are used. After the modem fills the first buffer, the

disk write is requested. The modem then starts to fill the second buffer while the first

buffer is written to disk. By the time the modem has filled the second buffer, the disk

write from the first one should have completed, so the modem can switch back to the first

buffer while the disk writes the second one. This double buffering decouples the producer

of data from the consumer, thus relaxing timing requirements between them.

A second use of buffering is to adapt between devices that have different data-transfer

sizes. Such disparities are especially common in computer networking, where buffers are

used widely for fragmentation and reassembly of messages. At the sending side, a large

message is fragmented into small network packets. The packets are sent over the

network, and the receiving side places them in a reassembly buffer to form an image of

the source data.

Caching

A cache is a region of fast memory that holds copies of data. Access to the cached copy is

more efficient than access to the original. For instance, the instructions of the currently

running process are stored on disk, cached in physical memory, and copied again in the

CPU's secondary and primary caches. The difference between a buffer and a cache is that

a buffer may hold the only existing copy of a data item, whereas a cache, by definition,

just holds a copy on faster storage of an item that resides elsewhere. Caching and

buffering are distinct functions, but sometimes a region of memory can be used for both

purposes. For instance, to preserve copy semantics and to enable efficient scheduling of

disk I/O, the operating system uses buffers in main memory to hold disk data. These

buffers are also used as a cache, to improve the I/O efficiency for files that are shared by

applications or that are being written and reread rapidly. When the kernel receives a file

I/O request, the kernel first accesses the buffer cache to see whether that region of the file

is already available in main memory. If so, a physical disk I/O can be avoided or

deferred.

Spooling and Device Reservation

 A spool is a buffer that holds output for a device, such as a printer, that cannot accept

interleaved data streams. Although a printer can serve only one job at a time, several

applications may wish to print their output concurrently, without having their output

mixed together. The operating system solves this problem by intercepting all output to the

printer. Each application's output is spooled to a separate disk file. When an application

finishes printing, the spooling system queues the corresponding spool file for output to

the printer. The spooling system copies the queued spool files to the printer one at a time.

In some operating systems, spooling is managed by a system daemon process. In other

operating systems, it is handled by an in-kernel thread. In either case, the operating

system provides a control interface that enables users and system administrators to

display the queue, to remove unwanted jobs before those jobs print, to suspend printing

while the printer is serviced, and so on.

Error Handling

An operating system that uses protected memory can guard against many kinds of

hardware and application errors, so that a complete system failure is not the usual result.

Devices and 1/0 transfers can fail in many ways, either for transient reasons, such as a

network becoming overloaded, or for "permanent" reasons, such as a disk controller

becoming defective. Operating systems can often compensate effectively for transient

failures. For instance, a disk read() failure results in a read() retry, and a network send ()

error results in a resend (), if the protocol so specifies. As a general rule, an I/O system

call will return 1 bit of information about the status of the call, signifying either success

or failure. In the UNIX operating system, an additional integer variable named errno is

used to return an error code one of about 100 values-indicating the general nature of the

failure. For instance, a failure of a SCSI device is reported by the SCSI protocol in terms

of a sense key that identifies the general nature of the failure, such as a hardware error or

an illegal request; an additional sense code that states the category of failure, such as a

bad command parameter or a self-test failure; and an additional sense-code qualifier that

gives even more detail, such as which command parameter was in error, or which

hardware subsystem failed its self-test.

 20. Explain the kernel architecture of a linux system in detail with a neat diagram.

Linux resembles any other traditional, non microkernel UNIX implementation. It

is a multiuser, multitasking system with a full set of UNIX-compatible tools. Linux's file

system adheres to traditional UNIX semantics, and the standard UNIX networking model

is implemented fully.

Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most traditional

UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the

operating system, including such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through

which applications can interact with the kernel. These functions implement much of the

operating-system functionality that does not need the full privileges of kernel code.

3. System utilities. The system utilities are programs that perform individual, specialized

management tasks. Some system utilities may be invoked just once to initialize and

configure some aspect of the system;

others—known as daemons in UNIX terminology—may run permanently, handling such

tasks as responding to incoming network connections, accepting logon requests from

terminals, and updating log files.

Figure illustrates the various components that make up a full Linux system. The

most important distinction here is between the kernel and everything else. All the kernel

code executes in the processor's privileged mode with full access to all the physical

resources of the computer.

 Linux refers to this privileged mode as kernel mode. Under Linux, no user-mode

code is built into the kernel. Any operating-system-support code that does not need to run

in kernel mode is placed into the system libraries instead.

Kernel Modules

The Linux kernel has the ability to load and unload arbitrary sections of kernel

code on demand. These loadable kernel modules run in privileged kernel mode and as a

consequence have full access to all the hardware capabilities of the machine on which

they run. In theory, there is no restriction on what a kernel module is allowed to do;

typically, a module might implement a device driver, a file system, or a networking

protocol.

Kernel modules are convenient for several reasons. Linux's source code is free,

so anybody wanting to write kernel code is able to compile a modified kernel and to

reboot to load that new functionality; however, recompiling, relinking, and reloading the

entire kernel is a cumbersome cycle to undertake when you are developing a new driver.

The module support under Linux has three components:

1. The module management allows modules to be loaded into memory and to talk to the

rest of the kernel.

2. The driver registration allows modules to tell the rest of the kernel that a new driver

has become available.

3. A conflict-resolution mechanism allows different device drivers to reserve hardware

resources and to protect those resources from accidental use by another driver.

 PROCESS MANAGEMENT

A process is the basic context within which all user-requested activity is serviced

within the operating system.

The fork() and exec() Process Model

The basic principle of UNIX process management is to separate two operations:

the creation of a process and the running of a new program. A new process is created by

the fork() system call, and a new program is run after a call to exec().

Process Identity

A process identity consists mainly of the following items:

• Process ID (PID). Each process has a unique identifier. PIDs are used to specify

processes to the operating system when an application makes a system call to signal,

modify, or wait for another process. Additional identifiers associate the process with a

process group (typically, a tree of processes forked by a single user command) and login

session.

• Credentials. Each process must have an associated user ID and one or more group IDs

that determine the rights of a process to access system resources and files.

• Personality. Process personalities are not traditionally found on/UNIX systems, but

under Linux each process has an associated personality identifier that can modify slightly

the semantics of certain system calls.

Process Environment

A process's environment is inherited from its parent and is composed of two null-

terminated vectors: the argument vector and the environment vector. The argument

vector simply lists the command-line arguments used to invoke the running program; it

conventionally starts with the name of the program itself.

The environment vector is a list of "NAME=VALUE" pairs that associates

named environment variables with arbitrary textual values. The environment is not held

in kernel memory but is stored in the process's own user-mode address space as the first

datum at the top of the process's stack.

Process Context

process context is the state of the running program at any one time; it changes

constantly.

Processes and Threads

Scheduling

Scheduling is the job of allocating CPU time to different tasks within an operating

system.

Process Scheduling

Linux has two separate process-scheduling algorithms. One is a time-sharing

algorithm for fair, preemptive scheduling among multiple processes; the other is designed

for real-time tasks, where absolute priorities are more important than fairness.

MEMORY MANAGEMENT

Memory management under Linux has two components. The first deals with

allocating and freeing physical memory—pages, groups of pages, and small blocks of

memory. The second handles virtual memory, which is memory mapped into the address

space of running processes.

FILE SYSTEMS

The Linux kernel handles all these types of file by hiding the implementation

details of any single file type behind a layer of software, the virtual file system (VFS).

Here, we first cover the virtual file system and then discuss the standard Linux file

system—ext2fs.

The VFS defines four main object types:

• An inode object represents an individual file.

• A file object represents an open file.

• A superblock object represents an entire file system.

• Adentry object represents an individual directory entry.

